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Abstract 
An image capturing solution extending dynamic range (DR) 

over 200 dB has been demonstrated by 64 × 64 pixels 20 µm pixel 
pitch CMOS image sensor with the lateral overflow integration 
capacitor and the current readout circuit in each pixel. The 
operation combining the four times of the voltage readouts and the 
one time of the current readout has achieved a high S/N ratio 
performance in the incident light ranging from about 10-2 to 108 
lx. 
 

Introduction  
A DR enhancement is strongly required in addition to a high 

sensitivity, a high S/N ratio and a high resolution in order to 
realize the ultimate performance of the image-sensing device for 
the digital camera, the security, the automotive and the medical 
applications. Several recent papers have reported the various 
approaches to extend DR; such as, the multiple exposures in a 
frame [1-6], the logarithmic compression [7-16], the dual 
photodiode in a pixel [17], the lateral overflow integration 
capacitor [18-20] and the combination of the linear and the 
logarithmic responses [21-24]. These approaches have improved 
DRs, however still remain in 100 to 140 dB of DRs. In order to 
extend DR furthermore, the CMOS image sensor featuring the 
lateral overflow integration capacitor and the current readout 
circuit in each pixel has been previously demonstrated [25]. This 
paper describes the over 200 dB DR image capturing method 
combining the four times of the voltage readout operations and 
the one time of the current readout operation to keep a high S/N 
ratio in the incident light ranging from about 10-2 to 108 lx. 

Device structure and circuit diagram 
Fig. 1 shows a schematic diagram of a pixel and a column 

circuit [25]. The pixel circuit consists of a fully depleted 
photodiode (PD), a transfer switch (T), a floating diffusion to 
convert the charge to the voltage (FD), a reset switch (R), a source 
follower amplifier (SF), a row select switch (X), an overflow 
photoelectron integration capacitor (CS), a connection switch 
between FD and CS (S), another transfer switch (T’), current 
mirror circuits amplifying the photocurrent from PD (CM1, 
CM2), a reference current source (IREF) and another row select 
switch (X1’). The column line component consists of a current 
source driven by the voltage readout operation (Ivol) and a current 
readout circuit of the current readout operation, which includes 
current mirror circuits comprising CM3 and CM4, a common-gate 
transistor (X2’) and a logarithmic compression circuit (LOG), in 
each column. The voltage readout circuit with a lateral overflow 
integration capacitor in a pixel is as same as described in the 
previous paper [20] and leads to the extension of the DR keeping a 

high sensitivity and a high S/N ratio without losing the overflow 
charges from PD. The current readout circuit achieves further 
extension of the DR to the bright side by reading out the 
logarithmic compression voltage of the photocurrent amplified in 
each pixel and column. 
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Figure 2. Block diagram and chip micrograph [25]. The chip size is 2.6 x 
2.6 mm2. 
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Figure 1. Schematic diagram of a pixel and a column circuit [25]. 



 

 

Fig. 2 shows the image sensor block diagram and the chip 
micrograph [25]. The image sensor with 64(H) × 64(V) pixels in 
the effective image area and a 20 × 20 �m2 pixel size is fabricated 
through a 0.35 �m 2P3M CMOS technology. 
 

Image capturing method and results 
Fig. 3 shows the timing diagram of the pixel circuits. The 

voltage readout operations follow the same timing diagram as 
described in the previous paper [20, 25] and, in addition, 
incorporates the electrical shutter operation. During the integration 
period (t3), the signal charges are integrated by PD until it reaches 
saturation, then the overflow charges are integrated at FD + CS 
via the switches T and S. This operation enables the overflow 
charges from PD to be utilized for the signal. After the integration 
(t4), the charges distributed to FD are readout as the noise N1 by 
turning the switch S off. The signal charges are transferred from 
PD to FD by turning the switch T on (t5) and readout as the signal 
S1 + N1. The signal charges at PD are fully transferred to FD + 
CS by turning the switch S on (t6) and then readout as the signal 
S2 + N2. The high tolerance of the signal S2 for the dark current 
shot noise and the reset noise is achieved by the mixture of the 
signal charges. FD + CS is reset by turning the switches T and R 
on (t1’) and the reset noise N2’ is readout by turning the switches 
R and T off (t2’). The noise N2’ includes the fixed-pattern noise 
caused by the variation of the threshold voltage of SF. In the 
shortest exposure of 1/130ks, the signals of N1, S1, S2 and N2’ 
are readout by keeping the switch T on and achieving a high 
charge transferring efficiency from PD to FD. In the voltage 
readout operations, the signals N1, S1 + N1, N2’ and S2 + N2 are 
readout from each pixel. The noise subtractions (S1 + N1) - N1 
and (S2 + N2) - N2’ are performed by the on-chip noise 
cancellation circuit. Either the noise-subtracted signal S1 or S2 is 
selected by the pixel as compared with the reference voltage level.  

The current readout operation consists of two phases, one is 
the reference-current readout and the other is the reference-current 
plus signal-current readout. The reference-current readout is 
performed by turning the switches R, S, T, and X1’ on, and T’ and 
X off (t1i), applying VREF to the gate of the transistor that produces 
IREF, and keeping the reference current. The reference current is 
amplified by the pixel- and column-current mirror circuits and 
finally converted to the logarithmic compressed reference voltage 
Ni. Then the photocurrent at the PD and the reference current are 
readout from the same path by turning the switches R and T off 
and the switch T’ on (t2i), and the signal voltage superimposed on 
the reference voltage Si + Ni is obtained. After that, the signal Si 

is readout by subtracting the Ni from the Si + Ni through the on-
chip noise cancellation circuit. Even in the current readout 
operation, the variation of the amplification factor by pixel and 
column is cancelled by this method. 

The 200 dB DR image capture is performed by the 
sequentially combining the voltage readout operations with the 
varied exposure time controlled rolling electric shutter and the 
current readout operation. The voltage readout operation achieves 
an over 100 dB DR by one time exposure. The four times of the 
exposures with varied time extend DR up to 160 dB in the 
incident light ranging from 10-2 to 106 lx. Furthermore, the image 
capture in the extremely bright light ranging from 106 to 108 lx is 
performed by the current readout operation. 

Fig. 4 shows the signal switching methods. Taking one of 
the voltage readout operations as an example shown in Fig. 4(a), 
the non-saturated signal S1 is compared with the reference voltage 
VREF1. Either the non-saturated signal S1 or the over-saturated 
signal S2 is selected when S1 is lower or higher than VREF1. The 
VREF1 is normally set a bit lower than the saturation voltage of the 
non-saturated signal S1 so that the variation of the saturation 
voltage does not affect the performance. It is also set to achieve 
the S/N ratio in S2 over 40 dB at the signal switching point. The 
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Figure 4. Signal switching methods (a) in one voltage readout operation. (b) in two successive voltage readout operations. (c) between voltage readout 

operation and current readout operation. 
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Figure 3. Timing diagram. 



 

 

over 100 dB DR signal keeping a high S/N ratio is obtained. 
In the two successive readout operations shown in Fig. 4(b), 

the over-saturated signal S2 of the previous voltage readout 
operation is compared with the reference voltage VREF2. Either the 
signal S2 or the non-saturated signal S1’ of the next voltage 
operation is selected according to the lower or the higher S2 than 
VREF2. The VREF2 is set a bit lower than the saturation voltage of 
S2 to achieve the S/N ratio of S1’ over 40 dB at the signal 
switching point. 

In the shortest exposure readout operations and the current 
readout operation shown in Fig. 4(c), the over-saturated signal S2 
of the shortest exposure voltage readout operation is compared 
with the reference voltage VREF3. Either the signal S2 or the 
current readout operation signal Si is selected when S2 is lower or 
higher than VREF3. The VREF3 is set a bit lower than the saturation 
voltage of S2 to achieve the S/N ratio of Si over 40 dB at the 
signal switching point. 

Fig. 5 shows the photoelectric conversion characteristics on 
the two vertical scales of the input-converted voltage for all the 
signals, and the digital signals [25]. In the voltage readout 
operation, the rolling electrical shutter time is sequentially varied 
as 1/30s, 1/500s, 1/8ks and 1/130ks, shortening the exposure time 
by about 1/16 between the respective steps. The voltage readout 
operation with four splits of the exposure time shows linear 
responses in the incident light ranging from about 10-2 to 106 lx 
and extends the DR up to about 160 dB. In addition, the current 
readout operation also realizes good photoelectric conversion 
characteristics from about 105 to 108 lx. The hybrid operation of 
the voltage and the current readouts is found to extend the DR 
over 200 dB.  

Fig. 6 shows the S/N ratio characteristics in the incident light 
ranging from about 10-2 to 108 lx. The solid line and square points 
are the calculated and the experiment data respectively. In the 
voltage readout operations, the S/N ratio around 10-1 lx or less is 
contributed by the dark random noise still remaining after the 
noise reduction operation of (S1 + N1) - N1. The S/N ratio 
around 10-1 lx or more is contributed by the photon shot noises. In 
the current readout operation, the noise originates in the signal 
processing circuits in the outside of the sensor chip and the S/N 
ratio will improve if the noise is decreased. It is found that the 
calculated values and the experimental values indicate a good 
agreement and the S/N ratio is about 40 dB at all switching points. 

Fig. 7 shows the sample images synthesized to over 200 dB 
DR (about 34 bit length). In each image, 8 bit data is displayed 
with 2 or 4 bit shift from the lower digit to the upper digit and the 
lens iris fixed at F-number of 1.4. It is found that the image sensor 
is capable of capturing various scenes with the incident light 
ranging from about 10-2 to 108 lx with high quality images.  

 

Conclusion 
A high S/N ratio image capturing method of the over 200 dB 

DR CMOS image sensor with lateral overflow integration 
capacitor and current readout circuit in each pixel is demonstrated. 
This technology is extendable to the various applications requiring 
the high sensitivity, high S/N ratio and hyper wide DR 
performance. 
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Figure 6. S/N ratio characteristics. 
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Figure 7. Sample images. (a) A high luminance Metal halide lamp (b) A 
lady by a florescent light 
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Figure 5. Photoelectric conversion characteristics [25]. 
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